

Congress 2015

Managing Groundwater for Drought, Clean Water, Food Security, and Ecosystems

Thomas Harter
University of California Davis
ThHarter@ucdavis.edu

http://groundwater.ucdavis.edu

Annual P [inches]

Annual P [inches]

Tri-annual P [inches]

California Precipitation 1896 – **2016**: Preceding Multiyear Average [inches]

Harter and Tolley, UC Davis (annual precipitation data courtesy of Tim Ross, DWR; http://www.wrcc.dri.edu/cgi-bin/divplot2_form.pl?0405

Central Water Hub:

SOURCE: Department of Water Resources, Sacramento-San Joaquin Delta Atlas (1995)

Sediments => result of erosion, water, wind, lake deposition, ocean bay deposition fractured bedrock of California's mountain ranges

Monthly Landscape Water Budget October – September

Monthly Landscape Water Budget October – September

Stippling in bars indicates depleted (irrecoverable)
water use (water consumed through evapotranspiration,
flowing to salt sinks like saline aquifers, or otherwise not
available as a source of supply)

Detail of bar graph: For water years 2001-2010, recycled municipal water varied from 0.2 to 0.5 MAF of the water supply.

From: DWR California Water Plan 2013 - Draft (Bulletin 160-2013)

Estimating
Groundwater Flows
Across Subbasin /
Political Boundaries

Ruud et al,. 2003; http://groundwater.ucdavis.edu/files/136420.pdf

Interbasin Flows in the Central Valley

Subregion	Average Annual	
	Interbasin Flow	
	1980-1993 (TAF/yr)	
		CVHM
1		-312.1
2		44.2
3		-225.8
4		558.6
5		-184.9
6		-47.2
7		19.4
8		50.3
9		237.7
10		-79.9
11		-54.9
12		-73.4
13		-0.8
14		85.2
15		621.8
16		-196.1
17		-176.8
18		-20.1
19		212.2
20		-164.4
21		-292.9
SAC TOTAL		140.2
SJ TOTAL		-209
Tulare TOTAL		68.9
CV TOTAL		0

Groundwater Levels during Drought

water-surface questionable data

ground surface ground surface

10 ft/y

Date

290.0

265.0

240.0

215.0

190.0

165.0

140.0

115.0

Elevation (ft)

Groundwater Levels during Drought

Change in Groundwater Level ****

Record Low 20th Century to Drought 2008-2014

http://www.water.ca.gov/waterconditions/docs/Drought_Response-Groundwater_Basins_April30_Final_BC.pdf

Change in Groundwater Storage in the Central Valley, 1920 - 2010

Consequences of Groundwater Overdraft...

- Seawater intrusion
- Increased pumping cost & cost of drilling new wells
- Land subsidence
- Water quality degradation
- Surface water depletion
- Impact to groundwater dependent ecosystems

...Long Before Running Out of

Groundwater!

Seawater Intrusion

Groundwater Levels during Drought: Irvine

Sacramento San Francisco Fresno Bakersfield Santa Barbara★ Los Angeles San Diego

Because of low river flows, depleted reservoirs, and declining aquifers, farmers and homeowners are drilling more and deeper wells to supply water. This map shows the number of new wells drilled by county during the first nine months of 2014. The largest increase in new wells centers on the Central Valley, coinciding with the largest declines in the water table.

Number of New Wells Drilled in 2014

0 30 250+

Land Subsidence

Land Subsidence: San Joaquin Valley

Subsidence, May 3 - October 18, 2014 Measured by Radarsat-2, processed by Jet Propulsion Laboratory

Legend

California Aqueduct
Delta-Mendota Canal
Eastside Bypass

California Department of Water Resources; Drought Response Update Fall 2014

California Groundwater Rights: Background

- Correlative Rights Doctrine safe yield of groundwater basin shared by overlying users
 - Katz v. Wilkinshaw, 1908
- California constitutional mandate for beneficial use (1928)
- Special districts (20 different types, about 2,300 districts)
 - Water districts, irrigation districts, private water companies, reclamation districts, water conservation
 districts, water replenishment districts, water storage districts, etc.
- County police power controls groundwater exports
 - Baldwin vs. Tehama County, 1994
- The Courts: basin adjudication / "physical solution" controls extraction
 - Many Southern California (sub)basins, mid 20th century
 - city of Barstow vs. Mojave Water Agency, 2000:
 - Right of water users to negotiate physical "equitable, practical" solution, regardless of water rights
 - Individual water rights holders cannot be forced into a voluntary agreement

California Groundwater Rights: Background

- Correlative Rights Doctrine safe yield of groundwater basin shared by overlying users
 - o Katz v. Wilkinshaw, 1908
- California constitutional mandate for beneficial use (1928)
- Special districts (20 different types, about 2,300 districts)
 - Water districts, irrigation districts, private water companies, reclamation districts, water conservation districts, water replenishment districts, water storage districts, etc.
- County police power controls groundwater exports
 - Baldwin vs. Tehama County, 1994
- The Courts: basin adjudication / "physical solution" controls extraction
 - Many Southern California (sub)basins, mid 20th century
 - City of Barstow vs. Mojave Water Agency, 2000:
 - Right of water users to negotiate physical "equitable, practical" solution, regardless of water rights
 - Individual water rights holders cannot be forced into a voluntary agreement
- State groundwater management:
 - Voluntary local groundwater management plans: AB 3030 (1992)
 - Financial incentives for local groundwater management: SB 1938 (2002)
 - Sustainable Groundwater Management Act of 2014: mandatory & expanded local control

Sustainable Groundwater Management Act of 2014

SEC. 2.

Section 113 is added to the Water Code, to read:

113.

It is the policy of the state that groundwater resources be managed sustainably for long-term reliability and multiple economic, social, and environmental benefits for current and future beneficial uses.

Sustainable groundwater **management is best achieved locally** through the development, implementation, and updating of plans and programs based on the best available science.

Sustainability = No "Undesirable Results"

10721. Unless the context otherwise requires, the following definitions govern the construction of this part:

- (u) "Sustainable groundwater management" means the management and use of groundwater in a manner that can be maintained during the planning and implementation horizon without causing undesirable results.
- (w) "Undesirable result" means one or more of the following effects caused by groundwater conditions occurring throughout the basin (Section 10721 (w)):
 - (1) **Chronic lowering of groundwater levels** indicating a significant and unreasonable depletion of supply if continued over the planning and implementation horizon. Overdraft during a period of drought is not sufficient to establish a chronic lowering of groundwater levels if extractions and recharge are managed as necessary to ensure that reductions in groundwater levels or storage during a period of drought are offset by increases in groundwater levels or storage during other periods.
 - (2) Significant and unreasonable reduction of groundwater storage.
 - (3) Significant and unreasonable **Seawater intrusion**.
 - (4) Significant and unreasonable **degraded water quality**, including the migration of contaminant plumes that impair water supplies.
 - (5) Significant and unreasonable **land subsidence** that substantially interferes with surface land uses.
 - (6) **Surface water depletions** that have significant and unreasonable adverse impacts on beneficial uses of the surface water.

[emphasis added]

So What Exactly Will Happen?

PHASE 1	PHASE 2	PHASE 3	PHASE 4
Realignment of Basins and Establishment of Basin Governance (2015 – 2017)	Development and Adoption of Groundwater Sustainability Plans (2017 – 2020/22)	Initial Management through Water Budgets (2020/22 – 2040/42)	Sustainable Groundwater Management (2040/42 and beyond)
2015 2016 20	17 2018 2019 20	20 2030 20	40 FUTURE

So What Exactly Will Happen?

- First Step: forming a Groundwater Sustainability Agency
 (GSA)
 - By June 2017

Medium and High Priority Groundwater Basins

Existing Groundwater Management Plans: Inventory and Assessment (No or Limited Implementation)

California Department of Water Resources, 2015

Critically Overdrafted Basins – Plans Due in 2020

Who can be a GSA?

- Exempt:
 - Adjudicated basins (mostly in southern CA)
 - Functional equivalent of a GSA, adjudicated basin
- Any local public agency
 - Cities
 - Counties
 - Water / irrigation districts
 - Other public agencies with responsibility for:
 - water supply,
 - water management, or
 - land use
 - NEW special acts districts (created by legislature, then CEQA, LAFCO, public vote) => Paso Robles

GSA Formation: Next Steps

- County: Groundwater Advisory Committee
- Stimulate dialogue / communication among local agencies, key stakeholders (e.g., Farm Bureau)
- Engage broad range of interested parties
- Gather information about the basin / find out where the information is / what is available
- Understand what Groundwater Sustainability Planning entails
- Look over the fence and see what's happening elsewhere
- Transparency, transparency, transparency
- DEADLINE: June 30, 2017

So What Exactly Will Happen?

- First Step: forming a Groundwater Sustainability Agency (GSA)
 - By June 2017
- Second Step: developing a Groundwater Sustainability Plan (GSP)
 - Within 5 years of GSA formation

Key Elements of (Local/regional) California Groundwater Management Plans

- Context / Basin Description
- Public and agency involvement
- Basin management objectives
- Monitoring
- Accountability and review

Key Actors in Environmental Resource Management - connected via **communication** / information flow -

Sustainable Groundwater Mgmt Act:

- Enforcement mandate
- Empowerment for demand management (in addition to supply management)
- Integration with surface water management
- Integration with water quality management (source control, remediation, containment)
- Integration with landuse planning
- Local control / enforcement, with state oversight / enforcement

Groundwater Management Portfolio: Overview

- Data collection, monitoring, modeling, assessment
- Supply management
- Demand management
- Stakeholder engagement and management

Monitoring and Assessment

Groundwater Sustainability Agencies have *discretionary* authority to:

- Conduct studies
- Register & monitor wells
- Set well spacing requirements
- Require extraction reporting
- Regulate extractions
- Implement capital projects
- Assess fees to cover costs

Some exemptions for smaller private well owners

Healthy

Health Maintenance

- Nutrition
- Exercise
- Relationships/social engagement
 - Monitoring & Assessment

Sustainable Groundwater

Groundwater Management

- Adaptive supply management
- Adaptive demand management
 - Stakeholder engagement
 - Monitoring & Assessment

TRIGGER(s)

M

• |||

Treatment Mode

- Medication / therapy
- Additional monitoring & Doctor's assessment

Reversible undesirable impacts

Extraordinary Measures

- Supply enhancement / demand reduction
- Additional monitoring & assessment

THRESHOLD(s)

R

Critically ill

Emergency Mode

- Emergency Room
 - Surgery

Major undesirable impacts

Emergency Mode

- SGMA Chapter 11
- Probationary Status

Death

 Groundwater unusable/ unavailable

Undesirable Result & Measurable Objective	Metric	Possible Threshold
Chronic lowering of groundwater levels: maintain desired range	Water level at key locations	 No less than at any time AFTER earlier mitigation of undesirable results and PRIOR to 2015, OR No less than at any time prior to 2015, OR No less than at any time prior to 2042, OR Any fixed level arrived at through local/state political consensus about "significant and unreasonable", driven by economic cost: Significant and unreasonable increase in pumping cost Significant and unreasonable cost of new well installation / well deepening
Reduction in groundwater storage: maintain desired range	Water level at key locations	
Seawater intrusion: Stop or reverse water quality degradation	Water level at key locations or GW Salinity	 Identify seawater intrusion threat via geologic and geochemical characterization & modeling => define safe water level thresholds for land subsidence. Threshold: Higher than land subsidence-driven threshold or any of the above, whichever is higher
Degraded water quality: no harm to SWRCB regs	Porter-Cologne/ anti-degradation	 set by current and future RWB regulations Use modeling and assessment to link groundwater management actions to RWB objectives
Land subsidence: stop or minimize subsidence	Water level at key locations	 Identify subsidence threat via geologic characterization & modeling => define safe water level thresholds for land subsidence. Threshold: Higher than land subsidence-driven threshold or any of the above, whichever is higher
Depletion of interconnected surface water & adverse impacts on SW beneficial uses: minimum required streamflow	Water level at key locations (within 1 mile of stream?), surface critical low flows at key locations & times	 Use modeling and assessment to link impact of groundwater management/use to beneficial uses of surface water => set thresholds No less than at any time AFTER earlier mitigation of undesirable results and PRIOR to 2015 => no further assessment needed Higher than surface water beneficial use-driven thresholds or any of the above, whichever is higher Thomas Harter, Univ. of California, 2015

Relationship between

Measurable Objectives (MO) and Practices

Management

Relationship between

Measurable Objectives (MO) and Practices

Management

Core Link between Local Planning Effort and State Oversight:

Monitoring & Modeling/Assessment

Seawater Intrusion

Seawater Intrusion

Storage for Local Use: Water Replenishment District of So. Cal. (founded in 1959)

Long-Term Storage via Import/Export: Groundwater Bank

DWR, California Water Plan Update 2013

Managing GW Storage to Prevent Seawater Intrusion: Orange County Water District

Water Balance by California Region (2010)

Groundwater Banking for Environmental Flows: Scott Valley, Siskiyou County

So What Exactly Will Happen?

- First Step: forming a Groundwater Sustainability Agency (GSA)
 - By June 2017
- Second Step: developing a Groundwater Sustainability Plan (GSP)
 - Within 5 years of GSA formation
- Third Step: implementing Groundwater Sustainability Plan
 - achieve sustainable management no later than 2040

total active public supply wells in California: 8,396 with contaminated groundwater (before treatment): 1,659

Model for deep groundwater used as drinking water (50-m simulation depth)

EXPLANATION

Predicted nitrate concentration, in milligrams per liter as N

>5-10

Missing data

Dubrovsky et al., USGS, 2010

Nitrate: Impacted regions within the Central Valley

red dots: wells above MCL for nitrate

CVSALTS, Tasks 7 and 8 – Salt and Nitrate Analysis for the Central Valley Floor Final Report, December 2013

Historic Nitrogen Fluxes

tons N/yr

Cropland Area

Focus: Enforcement Monitoring

Example of Working with a Regulation: Speed Limit

Why is Nonpoint Source Pollution Different from Point Source Pollution of Groundwater?

- Scale
 - Millions of acres vs. 1-10 acres
- Intensity
 - Within ~1 order magnitude above MCL vs. many orders of magnitude above
 MCL
- Hydrologic Function
 - Recharge vs. non-leaky
- Frequency
 - Ongoing/seasonally repeated vs. incidental
- Heterogeneity & Adjacency

Focus: Enforcement Monitoring

Applying Point Source Approach to Nonpoint Source:

Focus: Enforcement Monitoring

Alternative Monitoring Approach to Nonpoint Source:

Future of Groundwater Management in Agricultural Regions:

Opportunity for creative solutions to **simultaneously** address

- groundwater supply enhancement
- groundwater quality improvement
- drinking water protection

Online Resources

- http://groundwater.ucdavis.edu/sgma
- http://groundwater.ucdavis.edu/calendar
- http://www.water.ca.gov/groundwater/casgem/ (California DWR groundwater level monitoring program
- http://www.water.ca.gov/waterconditions/drought/# (California DWR drought information)
- http://www.waterboards.ca.gov/gama/geotracker_gama.shtml (California groundwater quality information)
- http://groundwater.ucdavis.edu/links_California/ (miscellaneous groundwater information sources)
- Contact Dr. Thomas Harter at ThHarter@ucdavis.edu

Total Groundwater Withdrawals [mm/yr]

Global Risk of GW Nitrate

(I1) Mobilizable Nitrogen Loads

Note: 10 mg N/I = 10 kg N/km 2 /yr for each $\frac{1}{1}$ mm/yr recharge

Population Map of the World & Major GW Withdrawal Centers

CA Ag Future: Demonstrated Groundwater Sustainability

CA Ag Future: Demonstrated Improvements in GW Quality

Hanson et al., ES&T 2011: Trend reversal in Danish groundwater

Where Does Your Food Come From?

California's drought affects the whole country's fruits, veggies, and nuts.

How Thirsty Is Your Food?

1/4 lb beef: 375 gal

1/4 lb chicken: 72 gal

0.3 gallons of water

http://blogs.kqed.org/lowdown/2014/11/17/why-californias-drought-is-americas-problem/

National water footprint, by sector [cu. m/capita/year]

Global Fraction of Cropland, 1992

"Green" vs. "Blue" Water Use in Agriculture

Rainfed agriculture = 80% of cultivated land, 60% of crop production Irrigated agriculture = 70% of applied water use, 90% of consumptive use 20% of cultivated land, 40% of crop production

Why use groundwater in agriculture?

- Ubiquity
- Upfront capital costs lower than surface water irrigation systems
- Affordable / no large organization needed
- Gov'mt subsidies (rural energy, pumps)
- Irrigation on demand
- Much higher value crops
- Drought resilience
- Water scarcity meets increasing food & feed demand (more [concentrated] animal ag)

Total Water Use Map

from: United Nations World Water Development Report, 2009

The monthly storage changes are shown as anomalies for the period April 2002–May 2013, with 24-month smoothing. Image: J. T. Reager, NASA Jet Propulsion Laboratory, California Institute of Technology, USA.

Groundwater Overdraft

Focus: Enforcement Monitoring

Example of Working with a Regulation: Speed Limit

Why is Nonpoint Source Pollution Different from Point Source Pollution of Groundwater?

- Scale
 - Millions of acres vs. 1-10 acres
- Intensity
 - Within ~1 order magnitude above MCL vs. many orders of magnitude above
 MCL
- Hydrologic Function
 - Recharge vs. non-leaky
- Frequency
 - Ongoing/seasonally repeated vs. incidental
- Heterogeneity & Adjacency

Focus: Enforcement Monitoring

Applying Point Source Approach to Nonpoint Source:

Key Elements to Future "Groundwater" Monitoring of NPS

- Three-track monitoring:
 - Enforcement: Monitor/report key outcomes of farm
 management practices, e.g., annual nitrogen budgets –
 "proxy" for measuring "groundwater discharge"
 - Research: link "proxy monitoring" to actual groundwater discharge at intensely monitored sites & using models (mgmt practice evaluation)
 - Assurance: Regional trend monitoring network (e.g., GAMA)

STEP 1: GROUNDWATER ASSESSMENT

High Vulnerability Areas: Key Criteria (ESJV Coalition)

- Hydrogeologically high vulnerability
 - statistical analysis of groundwater nitrate occurrence based on hydrogeology,
 soils, depth to groundwater, landscape slope, recharge
- Further prioritization (high -1, medium -2, low -3):
 - Exceedances of water quality objectives,
 - Proximity to areas contributing recharge to urban and rural communities that rely on groundwater as a source of supply,
 - Existing field and operational practices that are possibly the cause or source of groundwater quality degradation,
 - The largest acreage commodity types comprising up to at least 80 percent of irrigated agriculture in the high vulnerability areas,
 - Legacy or ambient groundwater conditions,

Eastern San Joaquin Valley Coalition: High Vulnerability Area

Another Vulnerability Scheme: Nitrate Hazard Index

Based on:

Irrigation

Soil

Crop

Dzurella, Pettygrove et al., Journal Soil Water Conservvation, 2015

STEP 2: MONITORING (three-pronged)

A: PROXY MONITORING: FARM NITROGEN FLUXES Eastern San Joaquin Valley

Focus: Enforcement Monitoring

Alternative Monitoring Approach to Nonpoint Source:

Governance Models: Form follows Function

- The entire groundwater basin must be covered by one or multiple GSAs
- Likely governance:
 - Single water district, county, city
 - MOU or other contractual agreement between public agencies
 - JPA among public agencies
 - Special acts district
- Centralized GSA
- Distributed GSA
- Hybrid GSA
 - Central authority on some mandates, distributed authority on other mandates
 - One GSA, many GSPs
 - Many GSAs, one GSP

GSA Formation: What's Next

- Stimulate dialogue / communication among local agencies, key stakeholders (e.g., Farm Bureau)
- Engage broad range of interested parties
- Gather information about the basin / find out where the information is / what is available
- Understand what Groundwater Sustainability Planning entails
- Consider facilitation services
- Look over the fence and see what's happening elsewhere
- Transparency, transparency, transparency
- DEADLINE: June 30, 2017

Groundwater Management Organizations: Key Action Areas for Innovative Thinking

- Planning process
 - Governance structures
 - Finding agreement on goals, reporting, enforcement, cooperation with neighboring agencies
- Cooperation and stakeholder involvement
 - Identifying and engaging participants / stakeholders
 - Structures for involving stakeholders
 - Avoiding / resolving disputes, dispute facilitation
- Collecting information about groundwater context
 - Improving groundwater information collection, analysis, presentation
 - Metering of extraction at the discretion of GSA
- Groundwater management portfolio

Groundwater Management Tools for Regional Organization

- Limiting Groundwater Use / Mandates:
 - Limit extraction
 - Mandate reductions in current pumping
 - Limit construction of new wells
 - Requiring water conservation measures
 - Fees to support management/infrastructure/communication efforts
- Infrastructure measures:
 - Water efficiency projects
 - Wastewater treatment and recycling
 - Importing water
 - Conjunctive use of surface water and groundwater
 - Groundwater banking
 - Monitoring networks, data collection, and data analysis/modeling
- Communication and networking measures
 - Facilitate stakeholder participation
 - Education
 - Data analysis and reporting
 - Secure funding (grants, project applications,...)

Role of the State: Carrot

- Department of Water Resources has a key role:
 - Technical assistance and funding (Prop 1: \$100 million for SGMA)
 - Regulation
 - Groundwater basin boundary adjustments
 - Minimum guidelines for appropriate GSP
 - Control
 - Review and approve GSPs
 - Review implementation

Role of the State: Carrot & Stick

- Department of Water Resources has a key role:
 - Technical assistance and funding (Prop 1: \$100 million for SGMA)
 - o Regulation
 - Groundwater basin boundary adjustments
 - Minimum guidelines for appropriate GSP
 - Control
 - Review and approve GSPs
 - Review implementation
- State Water Resources Control Board:
 - Enforcement where local control fails (after 2017)
 - "pobabationary status"
 - Public hearing and 180 days to fix the problem
 - After 180 days: SWRCB poses as interim GSA
 - Groundwater extraction reporting mandatory
 - Possibly temporary control of groundwater extraction
 - Development and implementation of interim GSP
 - When locals are ready: get authority back from state

California Groundwater Rights: Background

- Correlative Rights Doctrine safe yield of groundwater basin shared by overlying users
 - o Katz v. Wilkinshaw, 1908
- California constitutional mandate for beneficial use (1928)
- Special districts (20 different types, about 2,300 districts)
 - Water districts, irrigation districts, private water companies, reclamation districts, water conservation districts,
 water replenishment districts, water storage districts, etc.
- County police power controls groundwater exports
 - Baldwin vs. Tehama County, 1994
- The Courts: basin adjudication / "physical solution" controls extraction
 - Many Southern California (sub)basins, mid 20th century
 - City of Barstow vs. Mojave Water Agency, 2000:
 - Right of water users to negotiate physical "equitable, practical" solution, regardless of water rights
 - Individual water rights holders cannot be forced into a voluntary agreement
- State groundwater management:
 - Voluntary local groundwater management plans: AB 3030 (1992)
 - Financial incentives for local groundwater management: SB 1938 (2002)
 - Sustainable Groundwater Management Act of 2014: mandatory & expanded local control
- => if local/regional control fails: State Water Resources Control Board
- The Courts
 - Streamlined adjudication (legislation in 2015?)

WRD Monitoring and Modeling Programs

Groundwater Modeling: Central to Planning Effort

Goal

Eighteen Basin Management **Objectives**

Plan Management Components

Stakeholder Involvement Monitoring & Modeling Groundwater Protection

Increase Conservation Groundwater & Efficiency

Increase Recharge Increase Water Reuse

Integrated Groundwater Management

Funded Core Plan Management Actions Stakeholder Involvement & Monitoring Program

Unfunded Plan Management Actions

5-Year Schedule Planning & Coordination, Studies and Projects

Unfunded Plan Management Actions Future Planning & Coordination, Studies, and Projects

Water Use

Groundwater Irrigated Area Data are from: Shah, Villholth, Burke, "Groundwater: a global assessment of scale and significance", IWMI, 2007

Example: Agricultural Landuse Buffers

Moving Towards Better Control of Nonpoint Sources (NPS) of Groundwater: Needs

SCIENCE NEEDS

- NPS source control methods
- NPS pollution soil/groundwater fate, transport
- NPS pollution assessment, monitoring tools

REGULATORY FRAMEWORK

Enforcement: Paradigm shift in monitoring approaches

AGRICULTURE (largest NPS)

 Socio-cultural change needed to work within new regulatory frameworks

Investigate Impact of Alternative Management Practices

Summary of Key Challenges to Viticulture

- Participate and facilitate local GSA forming by engaging, informing stakeholders
- Increasing recharge in agriculture: Develop management practices to replace "poor irrigation efficiency" with "high irrigation efficiency AND clean groundwater recharge"
- Identify public well source areas and focus N management on those areas
 => great place to have vineyards with low N input
- Participate in ILRP coalitions: management practice evaluations that INCLUDE deep soil and/or groundwater N flux measurements
- Participate in ILRP coalitions: regional trend monitoring networks

Storage for Local Use: Santa Clara Valley Water District

Nitrate and salinity dynamics in the Central Valley

CVSALTS, Tasks 7 and 8 – Salt and Nitrate Analysis for the Central Valley Floor Final Report, December 2013

Figure 7-13

http://www.cvsalinity.org/index.php/docs/committee-document/technical-advisory-docs/conceptual-model-development/initial-conceptual-model-icm/2630-icm-final-report-december-2013/file.html

