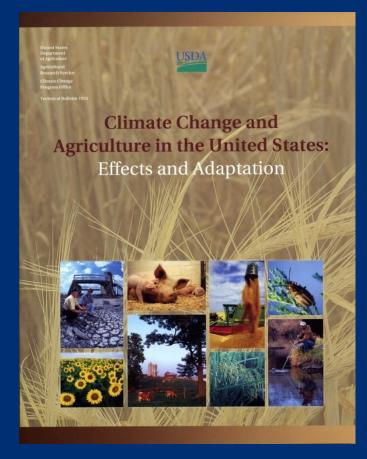
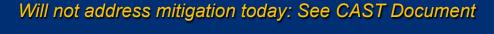
Climate Change & Agriculture: Effects & Adaptation

Charles L. Walthall PhD

National Program Leader
Climate Change, Soils and Air Emissions Research Program
USDA Agricultural Research Service


Agriculture Climate Change Science*

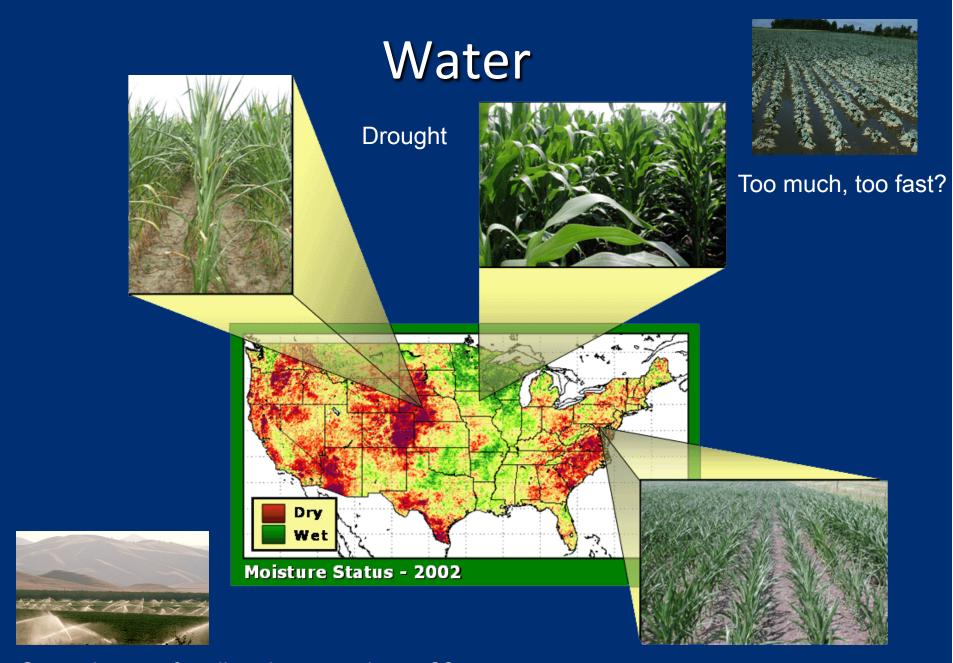
- <u>Mitigation</u> = reducing the impact of agriculture & associated activities on climate
 - Greenhouse gas management (N₂O, NH₄)
 - Carbon sequestration
- <u>Effects</u> = understanding the impact of climate change on agriculture
- <u>Adaptation</u> = enable sustainable agriculture under changing climate
 - "Effects & Adaptation"



Climate Change & Agriculture: Effects & Adaptation

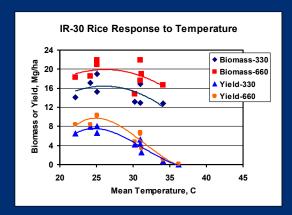
- Reference document for National Climate Assessment agriculture section
- Science synthesis update: 1400+ references)
- Foundation for risk analysis, future NCA
- Peer reviewed "Desk Reference"
- Created Community of scientists
 - USDA- ARS
 - Universities & Industry
 - >55 contributors

http://www.usda.gov/oce/climate change/effects 2012/effects agriculture.htm



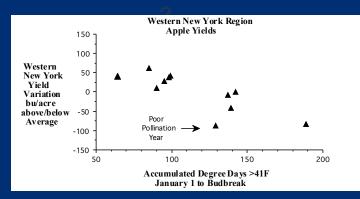
Changing Climate Conditions

- Temperature* increases: longer growing seasons, less frost, warmer nights
- Precipitation* changes: deficits, excesses, timing shifts, changing mix of rain/snow
- Increased intensity of precipitation events*: more flooding and more droughts
- Increasing carbon dioxide concentrations



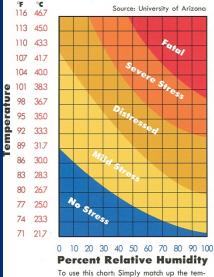
Ground water & soil moisture recharge??

Abiotic Impacts


Plant stress: yield

Air quality

Pollinators

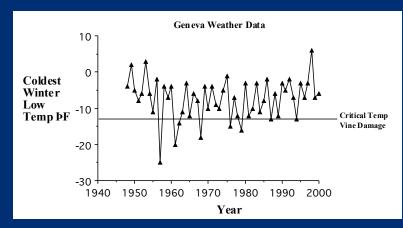

Pollination

Access to fields
Planting dates
Soil temperature

Food quality

Dairy Heat Stress Chart F C Source: University of Arizona

To use this chart: Simply match up the temperature on the vertical scale with the day's relative humidity on the horizontal scale.

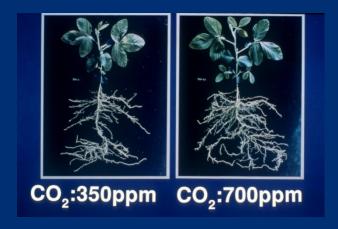

Animal stress

Water quality

Beneficial Impacts

Reduced exposure to frost*

Increased concentrations of


phenolic compounds

Some pest species will "move away"

Longer growing seasons

Biotic Impacts

Cheatgrass fire hazard?

- Changing habitats
- Enhanced CO₂ fertilization

Some weeds, vines, invasives, insects, pathogens & animals will expand their temporal & spatial ranges & *vigor*

Herbicide effectiveness??

Effects and Sensitivity Vary by Commodity

- Corn: high nighttime temperatures, high temperatures during pollination, water stress
- Soybean: water stress, high temperatures
- Wheat and small grains: extreme events, frost during flowering, water stress
- Rice: temperature extremes during pollination, water management
- Cotton: high temperatures during boll fill
- Pasture and rangeland: water stress
- Fruit trees: chilling requirements not met, high temperatures during fruit development
- Specialty crops: water stress, high temperatures

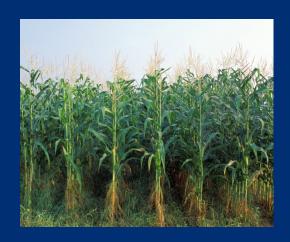
Increased Biotic Stresses Will Significantly Affect Agriculture

Insect pests

- Greater numbers & generations, increased insecticide resistance
- Geographic ranges increases & decreases
- Imports from foreign sources

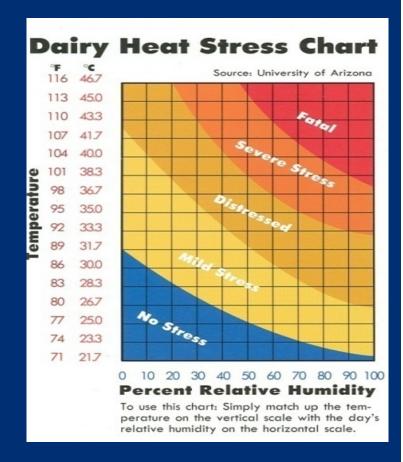
Pathogens

- Host-pathogen response changes (plants, insects, non-crop reservoirs)
- Cultural control measures may be less reliable
- Extreme events can spread


Weeds

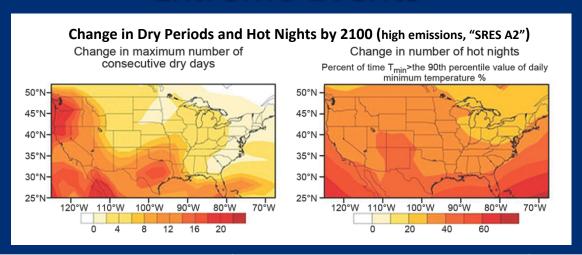
- Increased vigor, herbicide resistance
- Geographic range increases & decreases

Will affect the input COST of production



Livestock Production is Vulnerable

- Feed Grain & Forage
 - Quantity & Quality Decrease
 - <u>Production Cost Increase</u>
- Animal Heat & Humidity Stress
 - Reduces growth, reproduction,production (meat, dairy, eggs)
 - -- Climate control costs increase
- Disease & Pests
 - Frequency, intensity, distribution
 - Abundance and/or distribution of competitors,
 predators, & parasites of vectors themselves



Responses of Agricultural Systems

- Changes in farmer behavior
 - More attention to climate extremes (vs only means)
- Changes in production, consumption, prices, & trade patterns
 - Domestic & global market response
 - U.S. impacts depend on global response
- Economic effects depend on domestic & global adaptive capacity
 - Impacts vary by region, by sector, & by group

Extreme Events*

Year	Event	Location	Economic Impact
2011	Missouri River Flooding	Upper Midwest (MT, ND, SD, IA, KS, MO)	\$2.0 Billion
2011	Mississippi River Flooding	Lower Mississippi River (AR, TN, LA, MS, MO)	\$1.9 Billion
2011	Heat/Drought	Southern Plains, Southwest	\$10 Billion
2009	Drought	Southwest/Great Plains (CA, TX, GA, TN, NC, SC)	\$5.3 Billion
2008	Flooding	Upper Midwest (IA, IL, IN, MO, MN, NE, WI)	\$15.8 Billion NCDC 2011

Currently, NCDC estimates that the cost of the 2012 drought that affected much of the U.S. had an economic impact of \$12B. This estimate was not reviewed or available prior to publication of this report, however, and may change.

^{*}Extreme events have been shown to be more probable than 40–50 years ago. However, one cannot attribute any single event to climate change alone.

Effects & Adaptation Take Home Messages.....

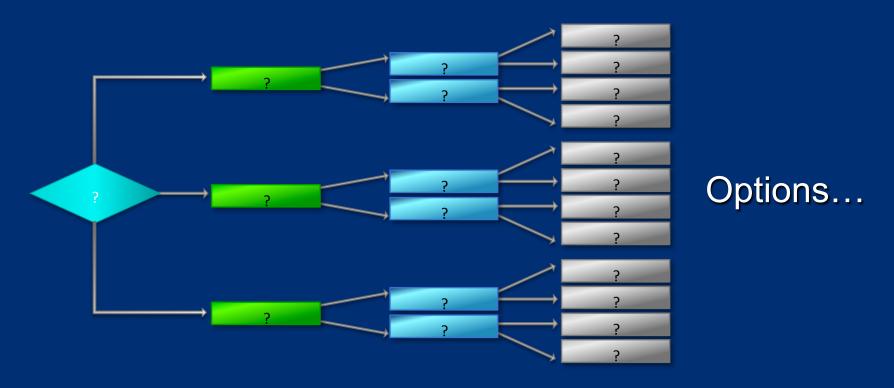
- Effects to intensify: beyond 20-30 years
- Effects will continue: Abiotic & Biotic
 - Yield Quantity & Quality
 - Cost of Production
- Generations: Future farming & climate different
- Risk Management: More climate & weather
- Natural resources base: soil, water, air
- Ecosystem services: pollinators, biodiversity

"Variability"
"Vegetative & Reproductive Stages"

Building Agricultural Resilience: Vulnerability

- Understand Potential <u>Exposures*</u>
 - Focus on extremes as well as mean changes
- Understand Sensitivities*
 - Define critical thresholds & interactions
- Enhance <u>Adaptive Capacity*</u>
 - Resilient systems: <u>Climate-ready crops & production systems</u>

*Vulnerability = (exposure + sensitivity - adaptive capacity)



GxExM

- Over-emphasis on genetics as solution
- Genetics x Environment x Management
 - Interactions
 - Cross/Trans Disciplinary
 - Matches producer decision-making
 - Yield gap focus
- Management: soils
- Systems: Add Post Production: G x E x M x P
- Collaborations are essential

Adaptation: Decision Support via Decision Trees?

What are the model, forecast, and data needs at each decision point?

Challenge to Agriculture: Sustainability*

- Satisfy human needs* for food, feed, and fiber, and contribute to biofuel
- Enhance environmental quality and the resources base
- Sustain economic viability of agriculture
- Enhance the quality of life for farmers, farm workers, and society as a whole

<u>Metrics</u>

http://www.usda.gov/oce/climate_change/effects.htm

Charles L. Walthall PhD

National Program Leader
Climate Change, Soils and Air Emissions Research Program
USDA Agricultural Research Service
Office of National Programs
5601 Sunnyside Avenue
Room 4-2282
Beltsville, MD 20705-5140
charlie.walthall@ars.usda.gov
301-504-4634

