

Land Resources

Dr. Ann Bartuska USDA Research, Education and Economics December 13, 2012

Major Challenges

- 9 billion people by 2050
- 25% of all land "highly degraded"
- 60-75% of disease outbreaks from animals to humans
- By 2025, 1.8 billion potentially living with absolute water scarcity
- Uncertainty brought by climate change

21st Century challenges

- What are land managers facing today?
 - Climate change
 - Large-scale disturbances drought, fire, insects and disease
 - Loss of open-space
 - Challenging economics
 - An engaged and disengaged- public

Changing face of forestry and natural resources

20th Century

- Sustainability for future generations
 - Wood
 - Water
- Managing with a growing nation and sense of unlimited resources

21st Century

- Sustainability for future generations
 - Access to open space and nature
 - Water
- Managing in face of largescale disturbance and uncertainty
- Connecting rural to urban systems

Making the Connections

- Connecting the land *landscape-scale conservation*
- Connecting the science *new approaches, new technology*
- Connecting with the people *in science and in practice*

Protected Primary Forest **Degraded Primary Forest**

Plantations

Secondary forest

Secondary forest

Degraded Forest Lands

Permanent pasture

Permanent pasture

Intensive agricultural land

Permanent pasture

Mechanisms of Innovation

<u>University Park, PA</u> Chesapeake Bay Watershed

Allegheny Plateau

Pennsylvania

Pittsburgh

West Virginia

Appalachian Valley & Ridge

Baltimore

Marylan

Atlantic Coastal Plain

Philadelphia

aware

Washington DC

Virginia

Appalachian Piedmont

Richmond

Mahantango Creek Watershed

WE-38 (7.2 km2 subatchment)

40 yr record in STEWARDS Published in Water Resources Research)

Runoff studies underpin P Index and other models

Tools for fertilizer and manure management

University Park, PA Optimized BMP placement for cost efficient watershed strategies Chesapeake Bay Watershed Allegheny Plateau CT+ CSC+ NM CSC + NMICT + NMPCT + CSCRBF NME Pennsylvania Research to improve identification Pittsburgh and management of critical sources Appalachian alley 8 and flow pathways 4541 L Runoff Hydrology overwhelms P sources Volume est Virginia P runoff 321 Runoff Mehlich-3 Soil P 177 mg/kg kø/ha/ 66 L runoff Runoff Mehlich-3 Soil P 144 mg/kg Watershed and greenhouse gas Appala implications of seeps Piedr Mehlich-3 Soil P 78 mg/kg Richmond Mobilization of nutrients in variable source area landscapes

Features...

- User-Friendly
- Web-based
- Scientifically Credible
- Facilitates Environmental Trading

-farm-scale simulator-Supported by existing models

Calculates 'delta' for...

- Nitrogen
- Phosphorus
- Sediment
- Carbon
- N₂O

What makes an Environmental Market Successful?

- Low transaction costs
- Clear rules/protocols for market transactions and trades
- Credible measurements and reporting
- Certainty/low risk
- Adequate number of buyers and sellers
- Buyers

Home About the Project Contact Us LCI Database

The challenge: meeting the food, water, and energy needs of the future

Agroforestry – a practical approach

Pine and switchgrass interplant - Catchlight

PRESENT

The existing rural landscape.

	LAND USE	
OUTPUT	AREA (ha)	REVENUE (000's)
JUIPUI	250,000	25,000
Sheep	200,000	40,000
Cattle	250,000	118,000
Wheat	150,000	112,000
Canola	150,000	490,000
Cotton	1.000.000	785,000
TOTAL	1,000,000	103,000

ENVIRONMENTAL PROBLEMS

- Dryland salinity increasing
- Rising water tables and saline discharge
- Nutrients leaching into waterways
- Low biodiversity
- Soil erosion and turbid waterways

UTUR

Planted forests in the landscape create a more diverse economy and a healthier environment.

OUTPUT	AREA (ha)	REVENUE (000's
Sheep	150,000	18,000
Cattle	120,000	28,000
Wheat	200,000	94,000
Canola	120,000	90,000
Cotton	150,000	490,000
Timber	26,000	12,000
Bioenergy	117,000	9,000
Charcoal	117,000	14,000
Carbon credits		41,000
Salinity credits		26,000
TOTAL	1,000,000	822,000

F

ENVIRONMENTAL BENEFITS

1-1-14-11

Dryland salinity reduced

Е

- Lower water tables and clean discharge
- Nutrients retained on farm
- · Biodiversity increased
- Soil erosion reduced

Six Strategic Platforms

Open Access to	Open Access to
Scholarly	Germplasm
Publications	Collections
Open Access to	Accelerated
Genetic and	Technology
Genomic Data	Transfer
Improved Statistics	Assembling Chief Scientists of R&D