Advancing global land mapping and monitoring

M. Hansen, P. Potapov, S. Turubanova, A. Krylov, A. Tyukavina, X. Song, A. Hudson, P. Amani, Q. Ying, V. Zalles and B. Adusei

Quantifying global land cover

DeFries et al., 1994

DeFries et al., 1998

Evergreen needleleaf forest

1km AVHRR

Loveland et al., 2000 Hansen et al., 2000 * Bartholomé et al., 2005

250m MODIS

Friedl et al., 2002 * Hansen et al., 2002 Arino et al., 2008

30m Landsat

Hansen et al., 2013 * Sexton et al., 2013 Gong et al., 2013

Tree cover 100%

Hansen et al., 2013 * Kim et al., 2014

Year of forest loss 2013 2001 From 360 by 180 pixels in 1994 to 720,000 by 1,400,000 now

30m Landsat

Hansen et al., 2013 * Kim et al., 2014

The Landsat Data Archive

- Systematic global acquisitions
- Free of charge
- Easy access
- Minimal preprocessing required

Total archive of 30-m observations, average number of images per year per scene

The Landsat Data Archive

- Systematic global acquisitions
- Free of charge
- Easy access
- Minimal preprocessing required

Total archive of 30-m observations, average number of images per year per scene

The Landsat Data Archive

- Systematic global acquisitions
- Free of charge
- Easy access
- Minimal preprocessing required

Total archive of 30-m observations, average number of images per year per scene

Daily MODIS image for August 5, 2013

Seasonally cloud-free window over the southern Amazon

Conversely, Central Africa is persistently cloudy

~2000 image composite

tree cover loss, 2000 to 2014
cropland 2000
new cropland, no tree cover loss
new cropland, tree cover loss

new cropland in tree cover, 2000-2005
 new cropland in tree cover, 2006-2010
 new cropland in tree cover, 2010-2014

15.7Mha of mapped gross forest cover loss 14.4 ± 2.0Mha of reference gross forest cover loss

6.2Mha mapped primary forest loss 7.5 ± 2.2Mha of reference primary forest loss

10.7Mha of forest loss by Ministry of Forestry

Annual primary forest loss disaggregated by landform for Indonesia as a whole, and the island groups of Sumatra, Kalimantan and Papua. Dashed lines are linear fits to the data

wetland forest loss 00-05
 wetland forest loss 05-10
 wetland forest loss 10-12
 lowland forest loss 00-05
 lowland forest loss 05-10
 lowland forest loss 00-05
 montane forest loss 00-05
 montane forest loss 05-10
 montane forest loss 05-10

wetland forest degradation 00-05
 wetland forest degradation 05-10
 wetland forest degradation 10-12
 lowland forest degradation 00-05
 lowland forest degradation 05-10
 lowland forest degradation 10-12
 montane forest degradation 00-05
 montane forest degradation 05-10
 montane forest degradation 05-10
 montane forest degradation 05-10

Margono et al., 2014, Primary forest cover loss in Indonesia, 2000 to 2012, *Nature Climate Change*

15.7Mha of mapped gross forest cover loss **14.4 ± 2.0Mha** of reference gross forest cover loss

6.2Mha mapped primary forest loss 7.5 ± 2.2Mha of reference primary forest loss

10.7Mha of forest loss by Ministry of Forestry

Annual primary forest loss disaggregated by landform for Indonesia as a whole, and the island groups of Sumatra, Kalimantan and Papua. Dashed lines are linear fits to the data

wetland forest loss 00-05
 wetland forest loss 05-10
 wetland forest loss 10-12
 lowland forest loss 00-05
 lowland forest loss 05-10
 lowland forest loss 10-12
 montane forest loss 00-05
 montane forest loss 05-10
 montane forest loss 05-10
 montane forest loss 05-10

wetland forest degradation 00-05
 wetland forest degradation 05-10
 wetland forest degradation 10-12
 lowland forest degradation 00-05
 lowland forest degradation 05-10
 lowland forest degradation 10-12
 montane forest degradation 00-05
 montane forest degradation 05-10
 montane forest degradation 05-10
 montane forest degradation 05-10
 montane forest degradation 10-12

Margono et al., 2014, Primary forest cover loss in Indonesia, 2000 to 2012, *Nature Climate Change*

01/16/2014

National Implementation of GLAD Forest Monitoring

Republic of Congo Ministry of Forestry

National forest extent and change baseline data sets

Peru Ministry of Environment

Joined peer-review publications

change assessment in Peru in support of

P V Potapov¹, J Dempewolf¹, Y Talero¹, M C Hansen¹, S V Stehman², C Vargas³, E J Rojas³, D Castillo⁴, E Mendoza⁵, A Calderón³, R Giudice³,

¹Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA ² Department of Forest and Natural Resources Management, State University of New York, Syracuse, NY tol:10.1088/1748-9326/9/12/12401

OPEN ACCESS IOP Publishing

Environ. Res. Lett. 9 (2014) 124012 (13pp)

N Malaga^{*} and B R Zutta^{*}

5 Conservation International, Lima, Peru

³ Proyecto REDD+ Ministerio del Ambiente, Lima, Peru ⁴ Programa Nacional de Conservación de Bosques, Lima, Peru

13210, USA

REDD+ implementation

Bangladesh Ministry of Forests and Environment

On-line maps and reports

Vegetation continuous fields

Global bare ground

100%

÷.,

0%

Permanent bare ground, 2000-2012

.

Percent bare ground times-series

Urbanization

Crop type mapping

June

example from Ohio – soybean and corn

≁

≁

South America southern hemisphere growing season soybean cultivated area

Surface water dynamics

Big data = time-series

Operational land monitoring using multi-spectral data

Spatial resolution

A few conclusions

- Big data is a given for global land monitoring, but not everyone works at the global scale
 - How do we most efficiently share methods in advancing accurate and transparent knowledge of our changing earth system?
 - We borrow from the MODIS Land Science team and focus on data reduction and characterization methods, as with our forest monitoring work in support SilvaCarbon, while some advocate 'all observation' applications
 - Online cloud-based solutions are increasingly popular, i.e. Google Earth Engine
- Global land cover and land use mapping and monitoring is rapidly maturing
 - Advances in relevant themes, spatial detail, and timeliness of product generation
 - Using maps as area estimators needs to be demonstrated per theme via good practice accuracy assessment
 - Repeatable, turn-key methods are needed to move from research to operations
- From-to changes by cover type/condition, as well as change factor (primary forest -> mechanical clearing -> palm oil) are a priority
 - Generate per pixel land use histories
 - Differentiate ephemeral from permanent change dynamics
- Operational earth observing systems with open data policies are required for long-term monitoring of global land change
 - Landsat + Sentinel will offer sub-weekly cadence
 - How do commercial systems approximate global public EO systems in data acquisition, access and processing?
- Operational time-series data should leverage other data as warranted
 - Lidar for calibration of structure, radar for overcoming limitations of optical data