

Variations and Changes in Weather and Climate Extremes

Thomas R. Karl, L.H.D.

Director, National Climatic Data Center Chair, U.S. Global Change Research Program

December 2012

Outline

- Climate-related activities
 - FY13 President's Budget
- Motivation
 - Billion-dollar Disasters
- State of the Science
 - Climate Fundamentals
 - Heat and Cold Waves
 - Precipitation/flooding and drought
 - Snowstorms
 - Tornadoes
- Implications

NOAA's National Climatic Data Center (NCDC):

Where are we? Who are we? What do we do?

Fiscal Year 2013 NOAA Climate-Related President's Budget Request

Activity	\$ Millions
Competitive Research Program	146.3
Climate Data and Information	13.0
Marine Ecosystems Climate Regimes and Ecosystem Productivity	1.8
Program Support	3.1
Laboratories and Cooperative Institutes	53.35
- Atlantic Oceanographic & Meteorological Laboratory	
- Air Resources Laboratory	
- Chemical Sciences Division	
- Global Monitoring Division	
- Physical Sciences Division	
- Geophysical Fluid Dynamics Laboratory	
- Pacific Marine Environmental Laboratory	
 Technology Transfer (Office of Research and Technology Applications) 	

Fiscal Year 2013 NOAA Climate-Related President's Budget Request

Activity	\$ Millions
Operational Climate Programs	135.5
- National Climatic Data Center	
- Climate Data Records	
- Climate Data Modernization Program	
- Regional Climate Service	
- Environmental Data Systems Modernization	
- Earth Observing System (EOS)	
 Cooperative Observer Network – Modernization (HCN-M) 	
 Local Warnings and Forecasts – Tropical Atmosphere Ocean (TAO) 	
- Climate Prediction Center	
- National Weather Service's Climate Services	
- Comprehensive Large Array Data Stewardship System (CLASS)	
- Jason-3	
- Joint Polar Satellite System (JPSS) Climate Sensors	
- High Performance Computing	

The Nation Is Climate-Conscious... for Good Reason

U.S. Billion-Dollar Weather and Climate Disasters: 1980 - 2011

Drought and Heatwaves

Hurricanes and Tropical Storms

Winter Storms and Crop Freezes

Example: Post-tropical Storm Sandy

- Over 100 lives
- Upwards of \$40 billion
- What to expect in future?
- No one storm is "caused" by climate change, but all storms now happen in a changed context

U.S. Drought Spring-Summer 2011-12

- Spring-summer 2012 Heat& Drought
 - Early green-up
 - Followed by rapid deterioration of vegetation
 - Impacted primary corn & soybean regions
- Feedbacks between heat and drought likely to amplify extremes of both in U.S.

Are Recent Extreme Events Related to Climate Change?

What causes the climate to vary and change?

- Natural fluctuations in solar output
 - Output from the sun
 - Orbital mechanics
- Changes in atmospheric composition
 - Heat-trapping gasses
 - Heat-absorbing and reflecting particles
- Changes in Earth's reflectivity (albedo)
 - Clouds, land (ice, snow, land use), sea ice
- Important gaps in knowledge
 - Clouds-particulate interaction, complex feedbacks

Is climate changing and how do we know?

- We have observed changes in the drivers of global climate
 - Solar radiation
 - Carbon dioxide and other greenhouse gases
 - Human-generated micron-size particulates: "aerosols"

Is climate changing and how do we know?

- How are changes in the drivers affecting the climate?
 - Paleoclimate records give a geological context

Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Has global warming stopped?

Records Set This Decade

In 132-year period of record:

- 2010
 - Warmest year on record globally (tied with 2005)
- 2011
 - 11th warmest globally (tied with 1997)
- 2012
 - Likely to be in top 10 warmest globally
 - In the U.S.:
 - 2012 virtually certain to be warmest on record
 - July was warmest month on record

NOAA's National Climatic Data Center

Has global warming stopped?

- Short-term
 cooling is possible
 within long-term
 warming
- Separating signal from noise requires longterm monitoring
 - Natural internal variability overwhelms trends at the decade scale

The Changing State of the Climate
Updated from Bulletin of the American Meteorological Society, 2010-12

NOAA U.S. Climate Extremes Index

- The index is sensitive to climate extremes in
 - Monthly maximum and minimum temperature
 - Daily precipitation and runs of dry days
 - Monthly Palmer **Drought Severity** Index: indicates too little or too much soil water
 - Landfalling tropical storm and hurricane wind velocity

What's Driving the Increase Since the 1970s?

Extremes in Maximum Temperature

Extremes in Minimum Temperature

Drought Severity and Water Surplus

Extremes in 1-Day Heavy Precipitation

All graphs are year-to-date (Jan - Nov) 1910 to 2012

Intensified Water Cycle

1-Day Heavy Precipitation Events

Percent of the U.S. with much above normal 1-day heavy precipitation (>50.8mm)

A statistically significant increase in extremes

Precipitable Water Difference

(Percent)

Difference between 1990-2009 minus 1971-1989 for daily, 1-in-5-year extreme events

Probable Max Precipitation

Flooding and Precipitation

River-Flow Trends in Annual Maximum: 85-127 years ending 2008

Trends in Total Annual Precipitation: 1909-2008

Regional similarities between trends of annual precipitation, droughts, and extremes of river flooding

Positive Negative Trends Trends

Drought

Percent of U.S. Area in Moderate to Extreme Drought

Widespread persistent drought

- 1930s (Central and Northern Great Plains, Northwest, Great Lakes)
- 1950s (Southern Plains, Southwest), 1980s (West, Southeast)
- First decade of the 21st century (West, Southeast)

Projected Change (A2 Scenarios – "Higher Emissions") in North American Precipitation (Late 21st Century)

Extreme Snowstorms

- Would changes in temperature and precipitation favor more or fewer extreme snowstorms?
- For the top 50 snowstorms during unusually warm, cool, dry and wet seasons, it varies:
 - E.g. Southern Plains much snowier when cool
 - Northern Plains much snowier when wet

Tornadoes & Convective Storms

- Although some ingredients that are favorable for severe thunderstorms have increased over the years, others have not
- Overall, changes in the frequency of environments favorable for severe convective storms have not been statistically significant

Tornadoes & Convective Storms

Wind Shear vs. Vertical Velocity–6km proximity values

Each cell is best viewed as a conditional probability

Assess the Earth's Climate: International, National, Annual Assessments

Are there tipping points or thresholds in the climate system we should be concerned about?

- Tipping points
 - Greenland ice melt, Arctic sea ice
 - Permafrost thaw, methane release
- Thresholds
 - Coral reefs Ocean acidification & thermal stresses
 - Pine bark beetles min temps
 - Invasive species
 - We know the thresholds for some species. E.g. 70-degree threshold for coldwater fish leading to decreasing habitat.
- Potential areas of research
 - Economic & ecosystems
 - Most systems, we don't know threshold for disequilibrium

Tipping Points Potential Areas of Research

U.S. National Climate Assessment work in progress

DIGITAL COAST

Sea Level Rise Viewer

http://www.csc.noaa.gov/digitalcoast/tools/slrviewer

Features

Displays potential future sea levels

Provides simulations of sea level rise at local landmarks

Communicates the spatial uncertainty of mapped sea levels

Models potential marsh migration due to sea level rise

Overlays social and economic data onto potential sea level rise

Examines how tidal flooding will become more frequent with sea level rise

Risk Modeling Framework

New Modules

Quality Control Process for new modules

RISK MODEL

A tool that allows multiple risk-related modules to be used together to quantify known risks

PLANNING DECISION

EVENT MODULES

(e.g., frequency, intensity, track of extreme events)

Datasets & Analysis

- Obs & monitoring , e.g.,
 CDRs, Normals, Trends
- Historical/Predicted data

Models

- CFS, CMIP3,5, Ensemble Models, etc.)
- Heuristic Model Projections

HAZARD MODULES

Temperature Extremes

Storm Surge

Precipitation
Frequency &
Amounts

Wind Speeds

VULNERABILITY MODULES

(exposure of sectors)

Public Health – Exposure to extreme heat

Infrastructure – Exposure to storm surge

Agriculture – Impact of water resources on crops

Financial – Exposure of the insurance sector

RISK MODULES

(potential loss or gain)

Ecosystem Services: Future impacts on fishing communities

Financial: Return on investment to protect against storm surge

Human Mortality and Morbidity: Loss of life and costs of extreme heat events

Open Source Platform: Ability to Combine Modules in a Common Format

Questions?

