B 0 en (\bigcirc 5 0 0 8 A 6 8 Ē 6 6

ß

Potential of underused renewable energy sources

From: Basic Research Needs for Solar Energy Utilization, DOE 2005

Imagining a Sustainable World

Lee Lynd, Dartmouth College

Principal Biomass Conversion Pathways

- Production
- Collection
- Processing
- Storage
- Transportation

- Thermochemical Conversion
 - Combustion
 - Gasification
 - Pyrolysis
 - Refining
- Biochemical Conversion
 - Anaerobic/Fermentation
 - Aerobic Processing
 - Biophotolysis
- Physicochemical
 - Esters
 - Alkanes

Biomass Feedstock Integrated Biorefinery Energy

- Heat
- Electricity
- Fuels
- Solids
- Liquids
- Gases
- Products
 - Chemicals
 - Materials

Value added products

Bryan Jenkins, UC Davis

Thermochemical Technologies

Bryan Jenkins, UC Davis

Ethanol Production Today

Brazil and the US are the leaders in ethanol fuel production They use the "easy way" to make ethanol. Dan Cosgrove, Penn State

Dan Cosgrove, Penn State

Economic Drivers: Biological Processing of Lignocellulose

Laser and Lynd, 2007

Net energy and net greenhouse gases for gasoline, six studies, and three cases

World GHG Emissions Flow Chart

The Carbon Debt Mortgage from Land Use Change

Fargione, J., J. Hill, D. Tilman, S. Polasky, and P. Hawthorne, 2008, "Land Cleaning and Biofuel Carbon Debt," *Sciencexpress*, available at www.sciencexpress.org, Feb. 7.

Maximum Nitrogen Load Changes for Biofuels

Millions of pounds per year of nitrogen delivered from the Chesapeake Bay watershed to the Bay under five modeling scenarios.

Assumptions for Alternative Scenarios:

- Corn: 300,000 additional acres of corn with typical levels of management practices
- Soybeans: 300,000 additional acres of soybeans with typical levels of management practices
- 300K Switchgrass: 300,000 acres of switchgrass, converted primarily from hay and pastureland, with no fertilization
- Corn with Cover Crops: Cover crops on all existing and new (additional 300,000) corn acres and one quarter of all other row crops, watershed-wide.
- IM Switchgrass: 1 million acres of switchgrass, converted primarily from hay and pastureland, with no fertilization

SOURCE: U.S. EPA CHESAPEAKE BAY PROGRAM OFFICE

Five Sustainable Sources

Organic Wastes
Algae (?)
Perennial Crops
21st Century Forestry
Multi-functional Agriculture

Comparative Land Productivity of Biofuel Options

<u>Crop Treas (0.5. except Care)</u>	<u>ruci ricius</u>
Near-term cellulosic: 5 dry ton/acre	Cellulosic ethanol 91 gal gasoline eq./ton (RBAEF)
Long-term cellulosic: 15 dton/acre	Corn ethanol: 2.8 gal/bushel
Corn: 160 bushel/acre	Soy oil: 18% of bean (dry basis)
Cane: 3 tons sugar (dry)/acre	0.47 kg ethanol/kg sugar
Soy: 42 bushel/acre	Biodiesel yield: 0.95 kg/kg soy oil

Quantitative evaluation of land use impacts (global)

Global Sustainable Bioenergy: Feasibility & Implementation Paths - "GSB Project"

Project initiated (June, 2009)

- International Organizing Committee formed
- Joint statement in Issues in Science and Technology
- Web site launched

Key Question: Is it physically possible for bioenergy to meet a substantial fraction of future world mobility and/or electricity demand while our global society also meets other important needs.

Staged structure

- 1. Meetings, assemble international team, scope project, get support
- 2. Address key question posed above unconstrained by current realities

3. Work back to the present considering policy, economic, transition, and development issues

"High Beams" Approach

GSB Project: Stage 1 Meetings & Organizing Committee

Representation	Host Institutions,	Meeting Chairs/	Dates
	Location	Organizing Committee Members	
European Union	Kluyver Center for Genomics of Industrial Fermentations, Delft, The Netherlands	 Andre Faaij, Utrecht University Patricia Osseweijer, Delft University of Technology 	February, 24-26, 2010
Africa	University of Sellenbosch, Stellenbosch, South Africa	 Emile van Zyl, University of Stellenbosch August Temu, World Agroforestry Centre, Nairobi 	March, 17-19, 2010
South America	University of São Paulo, São Paulo, Brazil	 José Goldemberg, University of São Paulo Carlos Henrique de Brito Cruz, FAPESP, São Paulo 	March, 22-24, 2010
North America	 University of Minnesota, Minneapolis/St. Paul, USA 	 John Foley, University of Minnesota 	May, 2010
Asia, Oceania	TBD	Reinhold Mann, Battelle Science and Technology, Malaysia	June 2010?

Steering Committee: Nathanael Greene, Natural Resources Defense Council

Lee Lynd (Chair), Dartmouth, Mascoma Corp.

Tom Richard, Pensylvania State University

 Sustainable forests and agricultural systems are a prerequisite for sustainable biomass energy systems

www.bioenergy.psu.edu

Photo credit: T. Richard